3.209 \(\int \frac{\tan (e+f x)}{\sqrt{d \cot (e+f x)}} \, dx\)

Optimal. Leaf size=209 \[ \frac{2}{f \sqrt{d \cot (e+f x)}}+\frac{\log \left (\sqrt{d} \cot (e+f x)-\sqrt{2} \sqrt{d \cot (e+f x)}+\sqrt{d}\right )}{2 \sqrt{2} \sqrt{d} f}-\frac{\log \left (\sqrt{d} \cot (e+f x)+\sqrt{2} \sqrt{d \cot (e+f x)}+\sqrt{d}\right )}{2 \sqrt{2} \sqrt{d} f}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{d \cot (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} \sqrt{d} f}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{d \cot (e+f x)}}{\sqrt{d}}+1\right )}{\sqrt{2} \sqrt{d} f} \]

[Out]

-(ArcTan[1 - (Sqrt[2]*Sqrt[d*Cot[e + f*x]])/Sqrt[d]]/(Sqrt[2]*Sqrt[d]*f)) + ArcTan[1 + (Sqrt[2]*Sqrt[d*Cot[e +
 f*x]])/Sqrt[d]]/(Sqrt[2]*Sqrt[d]*f) + 2/(f*Sqrt[d*Cot[e + f*x]]) + Log[Sqrt[d] + Sqrt[d]*Cot[e + f*x] - Sqrt[
2]*Sqrt[d*Cot[e + f*x]]]/(2*Sqrt[2]*Sqrt[d]*f) - Log[Sqrt[d] + Sqrt[d]*Cot[e + f*x] + Sqrt[2]*Sqrt[d*Cot[e + f
*x]]]/(2*Sqrt[2]*Sqrt[d]*f)

________________________________________________________________________________________

Rubi [A]  time = 0.164406, antiderivative size = 209, normalized size of antiderivative = 1., number of steps used = 13, number of rules used = 10, integrand size = 19, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.526, Rules used = {16, 3474, 3476, 329, 297, 1162, 617, 204, 1165, 628} \[ \frac{2}{f \sqrt{d \cot (e+f x)}}+\frac{\log \left (\sqrt{d} \cot (e+f x)-\sqrt{2} \sqrt{d \cot (e+f x)}+\sqrt{d}\right )}{2 \sqrt{2} \sqrt{d} f}-\frac{\log \left (\sqrt{d} \cot (e+f x)+\sqrt{2} \sqrt{d \cot (e+f x)}+\sqrt{d}\right )}{2 \sqrt{2} \sqrt{d} f}-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{d \cot (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} \sqrt{d} f}+\frac{\tan ^{-1}\left (\frac{\sqrt{2} \sqrt{d \cot (e+f x)}}{\sqrt{d}}+1\right )}{\sqrt{2} \sqrt{d} f} \]

Antiderivative was successfully verified.

[In]

Int[Tan[e + f*x]/Sqrt[d*Cot[e + f*x]],x]

[Out]

-(ArcTan[1 - (Sqrt[2]*Sqrt[d*Cot[e + f*x]])/Sqrt[d]]/(Sqrt[2]*Sqrt[d]*f)) + ArcTan[1 + (Sqrt[2]*Sqrt[d*Cot[e +
 f*x]])/Sqrt[d]]/(Sqrt[2]*Sqrt[d]*f) + 2/(f*Sqrt[d*Cot[e + f*x]]) + Log[Sqrt[d] + Sqrt[d]*Cot[e + f*x] - Sqrt[
2]*Sqrt[d*Cot[e + f*x]]]/(2*Sqrt[2]*Sqrt[d]*f) - Log[Sqrt[d] + Sqrt[d]*Cot[e + f*x] + Sqrt[2]*Sqrt[d*Cot[e + f
*x]]]/(2*Sqrt[2]*Sqrt[d]*f)

Rule 16

Int[(u_.)*(v_)^(m_.)*((b_)*(v_))^(n_), x_Symbol] :> Dist[1/b^m, Int[u*(b*v)^(m + n), x], x] /; FreeQ[{b, n}, x
] && IntegerQ[m]

Rule 3474

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*Tan[c + d*x])^(n + 1)/(b*d*(n + 1)), x] - Dist[
1/b^2, Int[(b*Tan[c + d*x])^(n + 2), x], x] /; FreeQ[{b, c, d}, x] && LtQ[n, -1]

Rule 3476

Int[((b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[x^n/(b^2 + x^2), x], x, b*Tan[c + d
*x]], x] /; FreeQ[{b, c, d, n}, x] &&  !IntegerQ[n]

Rule 329

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> With[{k = Denominator[m]}, Dist[k/c, Subst[I
nt[x^(k*(m + 1) - 1)*(a + (b*x^(k*n))/c^n)^p, x], x, (c*x)^(1/k)], x]] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0]
 && FractionQ[m] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 297

Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]},
Dist[1/(2*s), Int[(r + s*x^2)/(a + b*x^4), x], x] - Dist[1/(2*s), Int[(r - s*x^2)/(a + b*x^4), x], x]] /; Free
Q[{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ,
 b]]))

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \frac{\tan (e+f x)}{\sqrt{d \cot (e+f x)}} \, dx &=d \int \frac{1}{(d \cot (e+f x))^{3/2}} \, dx\\ &=\frac{2}{f \sqrt{d \cot (e+f x)}}-\frac{\int \sqrt{d \cot (e+f x)} \, dx}{d}\\ &=\frac{2}{f \sqrt{d \cot (e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{x}}{d^2+x^2} \, dx,x,d \cot (e+f x)\right )}{f}\\ &=\frac{2}{f \sqrt{d \cot (e+f x)}}+\frac{2 \operatorname{Subst}\left (\int \frac{x^2}{d^2+x^4} \, dx,x,\sqrt{d \cot (e+f x)}\right )}{f}\\ &=\frac{2}{f \sqrt{d \cot (e+f x)}}-\frac{\operatorname{Subst}\left (\int \frac{d-x^2}{d^2+x^4} \, dx,x,\sqrt{d \cot (e+f x)}\right )}{f}+\frac{\operatorname{Subst}\left (\int \frac{d+x^2}{d^2+x^4} \, dx,x,\sqrt{d \cot (e+f x)}\right )}{f}\\ &=\frac{2}{f \sqrt{d \cot (e+f x)}}+\frac{\operatorname{Subst}\left (\int \frac{1}{d-\sqrt{2} \sqrt{d} x+x^2} \, dx,x,\sqrt{d \cot (e+f x)}\right )}{2 f}+\frac{\operatorname{Subst}\left (\int \frac{1}{d+\sqrt{2} \sqrt{d} x+x^2} \, dx,x,\sqrt{d \cot (e+f x)}\right )}{2 f}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{d}+2 x}{-d-\sqrt{2} \sqrt{d} x-x^2} \, dx,x,\sqrt{d \cot (e+f x)}\right )}{2 \sqrt{2} \sqrt{d} f}+\frac{\operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{d}-2 x}{-d+\sqrt{2} \sqrt{d} x-x^2} \, dx,x,\sqrt{d \cot (e+f x)}\right )}{2 \sqrt{2} \sqrt{d} f}\\ &=\frac{2}{f \sqrt{d \cot (e+f x)}}+\frac{\log \left (\sqrt{d}+\sqrt{d} \cot (e+f x)-\sqrt{2} \sqrt{d \cot (e+f x)}\right )}{2 \sqrt{2} \sqrt{d} f}-\frac{\log \left (\sqrt{d}+\sqrt{d} \cot (e+f x)+\sqrt{2} \sqrt{d \cot (e+f x)}\right )}{2 \sqrt{2} \sqrt{d} f}+\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\frac{\sqrt{2} \sqrt{d \cot (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} \sqrt{d} f}-\frac{\operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\frac{\sqrt{2} \sqrt{d \cot (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} \sqrt{d} f}\\ &=-\frac{\tan ^{-1}\left (1-\frac{\sqrt{2} \sqrt{d \cot (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} \sqrt{d} f}+\frac{\tan ^{-1}\left (1+\frac{\sqrt{2} \sqrt{d \cot (e+f x)}}{\sqrt{d}}\right )}{\sqrt{2} \sqrt{d} f}+\frac{2}{f \sqrt{d \cot (e+f x)}}+\frac{\log \left (\sqrt{d}+\sqrt{d} \cot (e+f x)-\sqrt{2} \sqrt{d \cot (e+f x)}\right )}{2 \sqrt{2} \sqrt{d} f}-\frac{\log \left (\sqrt{d}+\sqrt{d} \cot (e+f x)+\sqrt{2} \sqrt{d \cot (e+f x)}\right )}{2 \sqrt{2} \sqrt{d} f}\\ \end{align*}

Mathematica [C]  time = 0.0653089, size = 35, normalized size = 0.17 \[ \frac{2 \, _2F_1\left (-\frac{1}{4},1;\frac{3}{4};-\cot ^2(e+f x)\right )}{f \sqrt{d \cot (e+f x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[e + f*x]/Sqrt[d*Cot[e + f*x]],x]

[Out]

(2*Hypergeometric2F1[-1/4, 1, 3/4, -Cot[e + f*x]^2])/(f*Sqrt[d*Cot[e + f*x]])

________________________________________________________________________________________

Maple [C]  time = 0.174, size = 642, normalized size = 3.1 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(f*x+e)/(d*cot(f*x+e))^(1/2),x)

[Out]

1/2/f*2^(1/2)*(cos(f*x+e)+1)^2*(cos(f*x+e)-1)*(I*sin(f*x+e)*((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((1-cos(f*x+e)+s
in(f*x+e))/sin(f*x+e))^(1/2)*((cos(f*x+e)-1+sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticPi(((1-cos(f*x+e)+sin(f*x+e)
)/sin(f*x+e))^(1/2),1/2-1/2*I,1/2*2^(1/2))-I*sin(f*x+e)*((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((1-cos(f*x+e)+sin(f
*x+e))/sin(f*x+e))^(1/2)*((cos(f*x+e)-1+sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticPi(((1-cos(f*x+e)+sin(f*x+e))/si
n(f*x+e))^(1/2),1/2+1/2*I,1/2*2^(1/2))+sin(f*x+e)*((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((1-cos(f*x+e)+sin(f*x+e))
/sin(f*x+e))^(1/2)*((cos(f*x+e)-1+sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticPi(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+
e))^(1/2),1/2-1/2*I,1/2*2^(1/2))+sin(f*x+e)*((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((1-cos(f*x+e)+sin(f*x+e))/sin(f
*x+e))^(1/2)*((cos(f*x+e)-1+sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticPi(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1
/2),1/2+1/2*I,1/2*2^(1/2))-2*sin(f*x+e)*((cos(f*x+e)-1)/sin(f*x+e))^(1/2)*((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e
))^(1/2)*((cos(f*x+e)-1+sin(f*x+e))/sin(f*x+e))^(1/2)*EllipticF(((1-cos(f*x+e)+sin(f*x+e))/sin(f*x+e))^(1/2),1
/2*2^(1/2))+2*cos(f*x+e)*2^(1/2)-2*2^(1/2))/sin(f*x+e)^4/(d*cos(f*x+e)/sin(f*x+e))^(1/2)

________________________________________________________________________________________

Maxima [F(-2)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Exception raised: ValueError} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(d*cot(f*x+e))^(1/2),x, algorithm="maxima")

[Out]

Exception raised: ValueError

________________________________________________________________________________________

Fricas [B]  time = 1.7455, size = 1531, normalized size = 7.33 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(d*cot(f*x+e))^(1/2),x, algorithm="fricas")

[Out]

-1/4*(4*sqrt(2)*d*f*(1/(d^2*f^4))^(1/4)*arctan(-sqrt(2)*f*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(1/4
) + sqrt(2)*f*sqrt((sqrt(2)*d^2*f^3*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(3/4)*sin(f*x + e) + d^2*f
^2*sqrt(1/(d^2*f^4))*sin(f*x + e) + d*cos(f*x + e))/sin(f*x + e))*(1/(d^2*f^4))^(1/4) - 1)*cos(f*x + e) + 4*sq
rt(2)*d*f*(1/(d^2*f^4))^(1/4)*arctan(-sqrt(2)*f*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(1/4) + sqrt(2
)*f*sqrt(-(sqrt(2)*d^2*f^3*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(3/4)*sin(f*x + e) - d^2*f^2*sqrt(1
/(d^2*f^4))*sin(f*x + e) - d*cos(f*x + e))/sin(f*x + e))*(1/(d^2*f^4))^(1/4) + 1)*cos(f*x + e) + sqrt(2)*d*f*(
1/(d^2*f^4))^(1/4)*cos(f*x + e)*log((sqrt(2)*d^2*f^3*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(3/4)*sin
(f*x + e) + d^2*f^2*sqrt(1/(d^2*f^4))*sin(f*x + e) + d*cos(f*x + e))/sin(f*x + e)) - sqrt(2)*d*f*(1/(d^2*f^4))
^(1/4)*cos(f*x + e)*log(-(sqrt(2)*d^2*f^3*sqrt(d*cos(f*x + e)/sin(f*x + e))*(1/(d^2*f^4))^(3/4)*sin(f*x + e) -
 d^2*f^2*sqrt(1/(d^2*f^4))*sin(f*x + e) - d*cos(f*x + e))/sin(f*x + e)) - 8*sqrt(d*cos(f*x + e)/sin(f*x + e))*
sin(f*x + e))/(d*f*cos(f*x + e))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan{\left (e + f x \right )}}{\sqrt{d \cot{\left (e + f x \right )}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(d*cot(f*x+e))**(1/2),x)

[Out]

Integral(tan(e + f*x)/sqrt(d*cot(e + f*x)), x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\tan \left (f x + e\right )}{\sqrt{d \cot \left (f x + e\right )}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(f*x+e)/(d*cot(f*x+e))^(1/2),x, algorithm="giac")

[Out]

integrate(tan(f*x + e)/sqrt(d*cot(f*x + e)), x)